6,851 research outputs found

    Complete trails of co-authorship network evolution

    Full text link
    The rise and fall of a research field is the cumulative outcome of its intrinsic scientific value and social coordination among scientists. The structure of the social component is quantifiable by the social network of researchers linked via co-authorship relations, which can be tracked through digital records. Here, we use such co-authorship data in theoretical physics and study their complete evolutionary trail since inception, with a particular emphasis on the early transient stages. We find that the co-authorship networks evolve through three common major processes in time: the nucleation of small isolated components, the formation of a tree-like giant component through cluster aggregation, and the entanglement of the network by large-scale loops. The giant component is constantly changing yet robust upon link degradations, forming the network's dynamic core. The observed patterns are successfully reproducible through a new network model

    Dialogue based interfaces for universal access.

    Get PDF
    Conversation provides an excellent means of communication for almost all people. Consequently, a conversational interface is an excellent mechanism for allowing people to interact with systems. Conversational systems are an active research area, but a wide range of systems can be developed with current technology. More sophisticated interfaces can take considerable effort, but simple interfaces can be developed quite rapidly. This paper gives an introduction to the current state of the art of conversational systems and interfaces. It describes a methodology for developing conversational interfaces and gives an example of an interface for a state benefits web site. The paper discusses how this interface could improve access for a wide range of people, and how further development of this interface would allow a larger range of people to use the system and give them more functionality

    Open-ended evolution to discover analogue circuits for beyond conventional applications

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s10710-012-9163-8. Copyright @ Springer 2012.Analogue circuits synthesised by means of open-ended evolutionary algorithms often have unconventional designs. However, these circuits are typically highly compact, and the general nature of the evolutionary search methodology allows such designs to be used in many applications. Previous work on the evolutionary design of analogue circuits has focused on circuits that lie well within analogue application domain. In contrast, our paper considers the evolution of analogue circuits that are usually synthesised in digital logic. We have developed four computational circuits, two voltage distributor circuits and a time interval metre circuit. The approach, despite its simplicity, succeeds over the design tasks owing to the employment of substructure reuse and incremental evolution. Our findings expand the range of applications that are considered suitable for evolutionary electronics

    Letter from Tow-o-goh-le, Waw-che-waw-he, and Sho-me-casse-tunga to George Sibley, April 5, 1810

    Get PDF
    Transcript of Letter from Tow-o-goh-le, Waw-che-waw-he, and Sho-me-casse-tunga to George Sibley, April 5, 1810. Chiefs acknowledge that members of their tribes have been robbing people and will compensate

    Real-Time Monitoring of Bodily Fluids Using a Novel Electromagnetic Wave Sensor

    Get PDF
    The use of a novel low power electromagnetic sensor for real-time detection of lactate in cerebrospinal fluid (CSF) is investigated. CSF holds key indicators relating to a patient’s future health. A multipurpose sensor platform is currently being developed with the capability to detect the concentration of materials in volumes =1 ml. This paper presents results from a microwave cavity resonator designed and created for this purpose, using varying concentrations of lactate in water. The work demonstrates the feasibility of monitoring bodily fluids in real-time. Such advancements are essential for improved and cost-effective delivery of healthcare services to patients

    Application of a Multivariate Process Control Technique for Set-Up Dominated Low Volume Operations

    Get PDF
    In traditional high-volume manufacturing applications, the timing of control adjustments to processes is based on parametric Statistical Process Control (SPC) methods, such as Shewhart X & R charts. In high-value, high-complexity and low-volume industries, where production runs are in the order of tens rather than thousands, traditional SPC approaches are not easily applicable. A manufactured component's complexity, with multiple critical features to monitor, increases the difficulty for a process operator to maintain all of them within their design tolerances. In response to this, this paper presents a framework of nonparametric SPC, called multivariate Set-Up Process Algorithm (mSUPA), for managing control adjustment when required. mSUPA uses a simple to interpret traffic light system for alerting process operators when an adjustment is required. mSUPA is underpinned by multivariate statistics and probability theory for validating a process set up. The case of mSUPA application to a real industry process is discussed
    • 

    corecore